
Exercises for §5.1

1. Let fn(x) = (x− 1/n)2, 0 ≤ x ≤ 1. Does fn converge uniformly?

Sol. We note that the pointwise limit of fn(x) is x
2 since 1/n → 0 as n → ∞.

Let f(x) = x2, then

sup
x∈[0,1]

∣∣fn(x)− f(x)
∣∣ = sup

x∈[0,1]

∣∣∣− 2x

n
+

1

n2

∣∣∣ ≤ 2

n
+

1

n2
→ 0 as n → ∞ .

which implies that the convergence is uniform.

3. Let fn : R → R be uniformly continuous and let fn converge uniformly to

f . Do you think that f must be uniformly continuous? Discuss.

Sol. Let ϵ > 0 be given. Since fn → f uniformly, there exists N > 0 such

that

sup
x∈R

∣∣fn(x)− f(x)
∣∣ < ϵ

3
whenever n ≥ N.

Since fN is assumed to be uniformly continuous, there exists δ > 0 such that∣∣fN(x)− fN(y)
∣∣ < ϵ

3
whenever |x− y| < δ.

Therefore,∣∣f(x)− f(y)
∣∣ ≤ ∣∣f(x)− fN(x)

∣∣+ ∣∣fN(x)− fN(y)
∣∣+ ∣∣fN(y)− f(y)

∣∣
<

ϵ

3
+

ϵ

3
+

ϵ

3
= ϵ whenever |x− y| < δ .

This implies that f is uniformly continuous on R. �

Exercises for §5.2

1. Discuss the convergence and uniform convergence of

a. fn(x) = xn/(n+ xn), x ≥ 0, n = 1, 2, · · ·

b. fn(x) = e−x2/n, x ∈ R, n = 1, 2, · · ·

Sol. We determine the pointwise limit first, and then see if the convergence

is uniform.

a. For each x ∈ [0, 1], fn(x) → 0, while for each x > 1, fn(x) → 1.

Therefore, the pointwise limit of fn(x) is f(x) =

{
0 if x ∈ [0, 1],

1 if x > 1.
Moreover,

d

dx
fn(x) =

nxn−1(n+ xn)− nxn−1xn

(n+ xn)2
=

n2xn−1

(n+ xn)2
≥ 0



which implies that fn is an increasing function. Therefore,

sup
x≥0

∣∣fn(x)− f(x)
∣∣ = max

{
sup

x∈[0,1]

∣∣fn(x)∣∣, sup
x>1

∣∣fn(x)− 1
∣∣}

= max
{∣∣fn(1)∣∣, ∣∣fn(0)− 1

∣∣} =
n

n+ 1
̸→ 0 as n → ∞ ;

thus the convergence is not uniform.

b. For each x ≥ 0, fn(x) → 1 (why?). However, the convergence is not

uniform since

sup
x∈R

∣∣∣e−x2/n − 1
∣∣∣ = 1 ̸→ 0 as n → ∞ . �

4. Discuss the uniform convergence of
∑∞

n=1 1/(x
2 + n2) .

Sol. Let gn(x) = 1/(x2 + n2) and Mn =
1

n2
. Then

∣∣gn(x)∣∣ ≤ Mn for all

x ∈ R, and
∞∑
n=1

1

n2
converges by the p-series test or improper integral test.

Therefore, the Weierstrass M -test implies that the series

∞∑
n=1

1

x2 + n2

converges uniformly. �

Exercises for Chapter 5

2. Determine which of the following sequences converge (pointwise or uni-

formly) as k → ∞. Check the continuity of the limit in each case.

a. (sinx)/k on R

b. 1/(kx+ 1) on ]0, 1[

c. x/(kx+ 1) on ]0, 1[

d. x/(1 + kx2) on R

e. (1, (cosx)/k2), a sequence of functions from R to R2

Sol.

a. The sequence of functions (sin x)/k on R converges to 0 uniformly since

sup
x∈R

∣∣∣sin x
k

− 0
∣∣∣ ≤ 1

k
→ 0 as k → ∞.



b. The pointwise limit of the sequence 1/(kx + 1) on ]0, 1[ is 0; however,

the convergence is not uniform since

sup
x∈]0,1[

∣∣∣ 1

kx+ 1
− 0

∣∣∣ ≥ 1

k · 1
k
+ 1

=
1

2
̸→ 0 as k → ∞.

c. The pointwise limit of the sequence x/(kx + 1) on ]0, 1[ is 0 (why?).

Moreover, the fact that

d

dx

x

kx+ 1
=

1

(kx+ 1)2
> 0

implies that the function
x

kx+ 1
is increasing; thus

sup
x∈]0,1[

∣∣∣ x

kx+ 1
− 0

∣∣∣ ≤ 1

k + 1
→ 0 as k → ∞

which implies that the convergence is uniform.

d. The pointwise limit of the sequence x/(1 + kx2) on R is 0. As the

previous case, we compute the derivative and find that

d

dx

x

1 + kx2
=

1− kx2

(1 + kx2)
;

which implies that the maximum and the minimum of the function

x/(1 + kx2) occurs at x = −1/
√
k and x = 1/

√
k, respectively (why?).

Therefore,

sup
x∈R

∣∣∣ x

1 + kx2
− 0

∣∣∣ = 1

2
√
k
→ 0 as k → ∞

which implies that the convergence is also uniform.

e. The pointwise limit of the sequence (1, (cosx)/k2) is (1, 0), and the

convergence is uniform since

sup
x∈R

∣∣∣(1, cosx
k2

)
− (1, 0)

∣∣∣ ≤ 1

k2
as k → ∞. �

3. Determine which of the following real series
∑∞

k=1 gk converge (pointwise

or uniformly). Check the continuity of the limit in each case.

a. gk(x) =

{
0, x ≤ k
(−1)k, x > k.

b. gk(x) =

{
1/k2, |x| ≤ k
1/x2, |x| > k



c. gk(x) =
(

(−1)k√
k

)
cos(kx) on R.

d. gk(x) = xk on ]0, 1[.

Sol. We first determine the sum of the series (if converges), and then deter-

mine the type of convergence and the continuity of the limit.

a. If x ≤ 1 gk(x) = 0 for all k; thus the partial sum
n∑

k=1

gk(x) vanishes. If

x > 1, then gk(x) ̸= 0 only when k ≤ [x] (where [x] denotes the largest

integer which is not greater than x); thus

∞∑
k=1

gk(x) =

[x]∑
k=1

gk(x) .

Therefore,
∞∑
k=1

gk(x) =


0 x ≤ 1
[x]∑
k=1

gk(x) x > 1.

To see if the convergence is uniform, we check the supremum of the

difference between the partial sum and the limit, and find that

sup
x∈R

∣∣∣ n∑
k=1

gk(x)−
[x]∑
k=1

gk(x)
∣∣∣ = 1 if n = [x] + 2k − 1 for some k ∈ N.

As a consequence, the convergence is not uniform.

b. Since gk(x) ≤
1

k2
and

∞∑
k=1

1

k2
< ∞, the Weierstrass M -test implies that

the series
∞∑
k=1

gk(x) converges uniformly (thus the convergence is also

pointwise). Moreover, it is clear that gk is continuous on R; thus the

partial sum
n∑

k=1

gk is also continuous. By Proposition 5.1.4, the limit is

continuous.

c. If x = π, cos(kx) = (−1)k; thus
∞∑
k=1

(
(−1)k√

k

)
cos(kx) diverges at x = π.

Therefore, the series
∞∑
k=1

gk(x) does not converge pointwise.

d. This is Example 5.1.9 (c). �

5. Suppose that fk → f uniformly, where fk : A ⊂ Rn → R; gk → g

uniformly, where gk : A → Rm; there is a constantM1 such that ∥g(x)∥ ≤ M1

for all x; and there is a constant M2 such that |f(x)| ≤ M2 for all x. Show



that fkgk → fg uniformly. Find a counter example if M1 or M2 does not

exist. Are M1 and M2 necessary for pointwise convergence?

Sol. Since fk → f uniformly, there exists N > 0 such that

sup
x∈A

∣∣fk(x)− f(x)
∣∣ < 1 whenever k ≥ N.

Therefore,

sup
x∈A

∣∣fk(x)∣∣ ≤ sup
x∈A

|f(x)|+ 1 ≤ M2 + 1 whenever k ≥ N.

For k ≥ N ,∣∣fk(x)gk(x)−f(x)g(x)
∣∣ ≤ ∣∣fk(x)−f(x)

∣∣∣∣g(x)∣∣+ ∣∣fk(x)∣∣∣∣gk(x)−g(x)
∣∣ (0.1)

≤ M1

∣∣fk(x)−f(x)
∣∣+ (M2 + 1)

∣∣gk(x)−g(x)
∣∣ ;

thus for k ≥ N

sup
x∈A

∣∣fk(x)gk(x)− f(x)g(x)
∣∣

≤ M1 sup
x∈A

∣∣fk(x)− f(x)
∣∣+ (M2 + 1) sup

x∈A

∣∣gk(x)− g(x)
∣∣

which converges to 0 as k → ∞ since fk → f and gk → g uniformly (why?).

Therefore, fkgk converges uniformly to fg.

If f and g both are not bounded functions, the limit on the right-hand

side of (0.1) might not vanish. Let fk(x) = gk(x) = x+
1

k
, f(x) = g(x) = x,

and A = R. Then fk → f and gk → g uniformly on A (why?), but∣∣fk(x)gk(x)− f(x)g(x)
∣∣ = (

x+
1

k

)2 − x2 =
2x

k
+

1

k2
;

thus

sup
x∈R

∣∣fk(x)gk(x)− f(x)g(x)
∣∣ = ∞

which implies that the convergence cannot be uniform.

For pointwise convergence, on the other hand, does not require that f

and g are bounded. In fact, if fk → f and gk → g pointwise, fkgk → fg

pointwise. �

8. Does pointwise convergence of continuous functions on a compact set to

a continuous limit imply uniform convergence on that set?

Sol. Let K = [0, 1], and fk : K → R be defined by

fk(x) =


kx 0 ≤ x ≤ 1

k

2− kx
1

k
< x ≤ 2

k

0 otherwise.



Then fk → 0 pointwise (why?), but the convergence is not uniform since

sup
x∈[0,1]

∣∣fk(x)− 0
∣∣ = 1 ̸→ 0 as k → ∞ . �

19. Prove that ∞∑
n=1

(sinnx
n2

)
x3

defines a continuous function on all of R.

Proof. We only need to show that the series is continuous at each point a ∈ R.

To see this, let fn(x) =
n∑

k=1

(sinnx
n2

)
x3 be the partial sum. We treat fn as

a sequence of functions defined on the interval
[
−2|a|, 2|a|

]
and show that

fn converges uniformly. If the convergence is indeed uniform, then the limit

f(x) =
∞∑
n=1

(sinnx
n2

)
x3 must be continuous on

[
−2|a|, 2|a|

]
by Proposition

5.1.4.

Nevertheless, on
[
−2|a|, 2|a|

]
we find that

∣∣∣sinnx
n2

x3
∣∣∣ ≤ 8|a|3

n2
, and it is

clear that
∞∑
n=1

8|a|3

n2
< ∞. Therefore, the Weierstrass M -test implies that the

series ∞∑
n=1

(sinnx
n2

)
x3

converges uniformly on
[
−2|a|, 2|a|

]
(which is equivalent to that fn → f

uniformly). �

29. Discuss the uniform continuity of the following:

a. f(x) = x2, x ∈]− 1, 1[.

b. f(x) = x1/3, x ∈ [0,∞[.

c. f(x) = e−x, x ∈ [0,∞[.

d. f(x) = x sin(1/x), 0 < x ≤ 1, f(0) = 0.

e. f(x) = sin[ln(1 + x3)], −1 < x ≤ 1, f(−1) = 0.

Sol.

a. We may extend the domain of f(x) by letting f(±1) = 1. Then this

extension, still denoted by f , is continuous on [−1, 1]. Since [−1, 1] is



compact, by Theorem 4.6.2, f is uniformly continuous on [−1, 1]; thus

f is uniformly continuous on ]−1, 1[.

b. The function f(x) = x1/3 is uniformly Hölder continuous on x ∈ [0,∞[.

In fact, ∣∣f(x)− f(y)
∣∣

|x− y|1/3
=

|x− y|2/3

x2/3 + x1/3y1/3 + y2/3
≤ 1 ∀x, y > 0.

Therefore,
∣∣f(x) − f(y)

∣∣ ≤ |x − y|1/3 for all x, y ≥ 0 (why?). This

implies that f is uniformly continuous on [0,∞).

c. The function f(x) = e−x is uniformly Lipschitz continuous on [0,∞[

since the mean value theorem implies that∣∣f(x)− f(y)
∣∣ = ∣∣f ′(ξ)

∣∣|x− y| ≤ |x− y|

since |f ′| ≤ 1 on [0,∞[. Therefore, for any given ϵ > 0, δ = ϵ will

provide us the δ in the definition of uniform continuity. Therefore, f is

uniformly continuous on [0,∞[.

d. The function f : [0, 1] → R is continuous since by the squeeze theorem

lim
x→0

f(x) = 0 = f(0)

and it is obvious that f is continuous at point x ̸= 0. By Theorem

4.6.2, f is uniformly continuous.

e. We note that f is not continuous at −1 since the limit of f as x → −1

does not exist. This implies that f cannot be uniformly continuous on

[−1, 1]. �

33. Let fn : [0, 1] → R be a sequence of increasing functions on [0, 1], and

suppose that fn → 0 pointwise. Must fn converge uniformly? What if fn

just converges pointwise to some limit f?

Sol. The convergence is uniform since

sup
x∈[0,1]

∣∣fn(x)− 0
∣∣ (why?)

≤
∣∣fn(0)∣∣+ ∣∣fn(1)∣∣ → 0 as n → ∞.

Without the condition that fn is increasing or f = 0, then fn might not

converges uniformly. For example,



1. The sequence fn in Exercise 8 converges pointwise to 0 but the conver-

gence is not uniformly.

2. fn(x) = xn which converges pointwise to f =

{
0 0 ≤ x < 1
1 x = 1

but the

convergence is not uniform. �


